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Semantic grounding of concepts and 
meaning in brain-constrained neural 

networks 

Neural networks can be used to increase our understanding of the brain basis
of higher cognition, including capacities specific to humans. Simulations with
brain-constrained networks give rise to conceptual and semantic
representations when objects of similar type are experienced, processed and
learnt. This is all based on feature correlations. If neurons are sensitive to
semantic features, interlinked assemblies of such neurons can represent
concrete concepts. Adding verbal labels to concrete concepts augments the
neural assemblies, making them more robust and easier to activate. Abstract
concepts cannot be learnt directly from experience, because the different
instances to which an abstract concept applies are heterogeneous, making
feature correlations small. Using the same verbal symbol, correlated with the
instances of abstract concepts, changes this. Verbal symbols act as
correlation amplifiers, which are critical for building and learning abstract
concepts that are language dependent and specific to humans.
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Remarkable progress in AI has far surpassed expectations of just a few years ago is rapidly changing science and society. Never before had a technology
been deployed so widely and so quickly with so little understanding of its fundamentals. Yet our understanding of the fundamental principles of AI is
lacking. I will argue that developing a mathematical theory of deep learning is necessary for a successful AI transition and, furthermore, that such a
theory may well be within reach. I will discuss what such a theory might look like and some of its ingredients that we already have available. At their core,
modern models, such as transformers, implement traditional statistical models -- high order Markov chains. Nevertheless, it is not generally possible to
estimate Markov models of that order given any possible amount of data. Therefore, these methods must implicitly exploit low-dimensional structures
present in data. Furthermore, these structures must be reflected in high-dimensional internal parameter spaces of the models. Thus, to build
fundamental understanding of modern AI, it is necessary to identify and analyze these latent low-dimensional structures. In this talk, I will discuss how
deep neural networks of various architectures learn low-dimensional features and how the lessons of deep learning can be incorporated in non-
backpropagation-based algorithms that we call Recursive Feature Machines.
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The global brain may have conscious nodes with mental states – but this 
brain does not have to consciousness! It is not a mind! 



How can modern neural networks like large language
models be useful to the field of language acquisition, and
more broadly cognitive science, if they are not a priori
designed to be cognitive models? As developments
towards natural language understanding and generation
have improved leaps and bounds, with models like GPT-4,
the question of how they can inform our understanding of
human language acquisition has re-emerged. This talk
will try to address how AI models as objects of study can
indeed be useful tools for understanding how humans
learn language. It will present three approaches for
studying human learning behaviour using different types
of neural networks and experimental designs, each
illustrated through a specific case study. Understanding
how humans learn is an important problem for cognitive
science and a window into how our minds work.
Additionally, human learning is in many ways the most
efficient and effective algorithm there is for learning
language; understanding how humans learn can help us
design better AI models in the future.

What neural networks can teach us 
about how we learn language
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Comparing how babies and AI 
learn language 

Judit Gervain will discuss the parallels and the differences between 
infant language acquisition and AI language learning, focusing on the 
early stages of language learning in infants. In particular, she will 
compare and contrast the type and amount of input infants and Large 
Language Models need to learn language, the learning trajectories, 
and the presence/absence of critical periods. She has used near-
infrared spectroscopy (NIRS) as well as cross-linguistic behavioral 
studies to shed light on how prenatal linguistic exposure and early 
perceptual abilities influence language development. Her work has 
shown that infants discern patterns and grammatical structures from 
minimal input, a capability that AI systems strive to emulate.
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Generating meaning: active inference and the scope and limits of passive AI
Generative models for sequential dynamics in active inference

Brain-inspired computational intelligence via predictive coding

Supervised structure learning
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Daniel C. Dennett Memorial Talk
Nicholas Humphrey will explore the concept of sentience as a crucial
evolutionary development, discussing its role in human consciousness and
social interactions.
Sentience represents not just a biological but a complex psychological
invention, crucial for personal identity and social fabric.
He will also address Daniel Dennett’s Question “Will AI Achieve
Consciousness? Wrong Question.”

https://humphrey.org.uk
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Melanie Mitchell will survey a debate in the artificial
intelligence (AI) research community on the extent to
which current AI systems can be said to "understand"
language and the physical and social situations language
encodes. She will describe arguments that have been
made for and against such understanding, hypothesize
about what humanlike understanding entails, and discuss
what methods can be used to fairly evaluate
understanding and intelligence in AI systems.

AI’s Challenge of 
Understanding the World
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Mathematics is a hallmark of human intelligence and a long-standing goal of AI. It
involves analyzing complex information, identifying patterns, forming conjectures,
and performing logical deduction. Many of these capabilities are beyond the
reach of current AI, and unlocking them can revolutionize AI applications in
scientific discovery, formal verification, and beyond. In this talk, I will present
initial steps towards the grand vision of AI mathematicians, taking an approach
that combines the generative power of large language models (LLMs) with the
logical rigor of formal methods.

I will cover our work on using LLMs to (1) prove formal theorems in proof
assistants such as Coq and Lean and (2) automatically translate human-written
mathematics into formal theorems and proofs—a task called autoformalization.
For theorem proving, we introduce the entire system for extracting data, training
LLMs to generate proof steps, interacting with proof assistants to search for
proofs, and deploying the model to assist human users. For autoformalization,
using Euclidean geometry as an example domain, we introduce a neuro-symbolic
framework that combines LLMs with SMT solvers and domain knowledge. Finally,
we discuss future directions for AI mathematicians beyond theorem proving and
autoformalization, including important problems such as automatic conjecturing
and applications in natural language and program verification.
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Whether we call it perception, measurement, or analysis, it is how
we humans get an impression of the world in our minds. Human
language, mathematics and logic are ways to formalize the world.
A new and still more powerful one is computation.
I’ve long wondered about ‘alien minds’ and what it might be like to
see things from their point of view. Now we finally have in AI an
accessible form of alien mind. Nobody expected this—not even its
creators: ChatGPT has burst onto the scene as an AI capable of
writing at a convincingly human level. But how does it really work?
What’s going on inside its “AI mind”?
After AI’s surprise successes, there’s a somewhat widespread
belief that eventually AI will be able to “do everything”, or at least
everything we currently do. So what about science? Over the
centuries we humans have made incremental progress, gradually
building up what’s now essentially the single largest intellectual
edifice of our civilization.
The success of ChatGPT brings together the latest neural net
technology with foundational questions about language and
human thought posed by Aristotle more than two thousand years
ago.

Computational Irreducibility, Minds, and 
Machine Learning
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Humans describe the world by
1. language
2. abstraction (symbolic)
3. mathematic notation
4. computational language 

(formalize our descriptions)

Simple rules could be quite complex!!!

Which ones we choose to care about?

list of possible rules (just some)

we cannot jump to the future as this is too complex
because of computational irreducibility
à passage of times gets meaningful

rule nr 30


