23 December 2022 AGI Debate

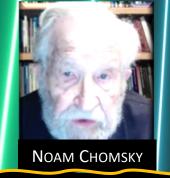
on MONTREAL.Al's YouTube channel

https://youtu.be/JGiLz_Jx9ul

WITH

Erik Brynjolfsson, Yejin Choi, Noam Chomsky, Jeff Clune, David Ferrucci, Artur d'Avila Garcez, Michelle Rempel Garner, Dileep George, Ben Goertzel, Sara Hooker, Anja Kaspersen, Konrad Kording, Kai-Fu Lee, Gary Marcus, Francesca Rossi, Jürgen Schmidhuber, Angela Sheffield and Meredith Whitaker

FNE QUESTIONS



4 Build AI system with human values? 5 Moral & legal issues?

"It is hard to know where [Al researchers] have gone wronger: in underestimating language or overestimating computer programs"

DOES NOT TELL US ANYTHING ABOUT LANGUAGE

- systems make no difference between possible & impossible language
- even though there is utility such as transcriptions, translation, plagiarism

DISCUSSION

Marcus: Should AI spend more time on innateness?

ínítíal state 🗲 steady state, involves 3 factors: 1. Internal/innate structure 2

Data coming in 3. General laws o nature

- abstraction
- reasoning
- compositionality
- factuality

Konrad Kording

NOT TALKING ABOUT BRAINS

- architecture
- learning rule
- objective function

DILEEP GEORGE

1. TURN TO COGNITIVE (NEURO) SCIENCES?

FUNDAMENTAL DIFFERENCES BETWEEN CURRENT MODELS & HUMAN-LIKE INTELLIGENCE

- data-efficiency & causality
- learned world-models compatible with reasoning
- grounding language with mental simulation
- utilizing emergent insights from scaled-up models
- utilizing insights from cognitive science & neuroscience

Four Pillars

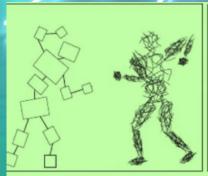
- 1. Meta-learn architectures
- 2. Meta-learn learning algorithms
- 3. Generate effective learning environments
- 4. Leveraging human data

JEFF CLUNE

Several assumptions about deep neural networks that are arguably primitive:

- Very expensive to memorize the longtail. Majority of weights are dedicated to learning low frequency attributes.
- Backward and forward pass for every example
- All examples are treated equally, despite differences in capacity cost of learning a representation.
- Our model lacks collective intelligence
- Globalized updates lead to "catastrophic forgetting"

ARTUR D'AVILA GARCEZ


LIMITATIONS OF CURRENT AI

FAIRNESS
DATA/ENERGY EFFICIENCY
CORRECTNESS, ROBUSTNESS
EXTRAPOLATION / REASONING
REUSE OVER TIME / ANALOGY
TRUST

NEUROSYMBOLIC AI

- elements of symbolic & subsymbolic
- learning from data & knowledge main challenges: disinformation & not autonomous weapons

3. STRUCTURE/ DEVELOP AI?

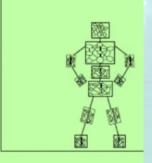
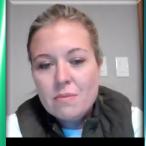



Figure 1. Conflict between theoretical extremes.

MICHELLE REMPEL GARNER

value-aligned

inclusion

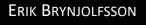
trust

beyond tech solutions

FRANCESCA ROSSI

Al safety? Equity? Morality?

DAVID FERRUCCI



Anja Kaspersen

PRODUCTIVITY GAINS GET SPLIT BETWEEN CAPITAL AND LABOR.

But each time you replace labor with robot, productivity gains goes to owner of capital

KAI-FU LEE

ANGELA SHEFFIELD

- 4. BUILD AI SYSTEM WITH HUMAN **VALUES?**
- 5. MORAL & LEGAL ISSUES?